Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
2.
PLoS Negl Trop Dis ; 17(3): e0011223, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972298

RESUMO

Chronic Chagas cardiomyopathy (CCC) is one of the leading causes of morbidity and mortality due to cardiovascular disorders in endemic areas of Chagas disease (CD), a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. CCC is characterized by parasite persistence and inflammatory response in the heart tissue, which occur parallel to microRNA (miRNA) alterations. Here, we investigated the miRNA transcriptome profiling in the cardiac tissue of chronically T. cruzi-infected mice treated with a suboptimal dose of benznidazole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of both (Bz+PTX), following the CCC onset. At 150 days post-infection, Bz, PTX, and Bz+PTX treatment regimens improved electrocardiographic alterations, reducing the percentage of mice afflicted by sinus arrhythmia and second-degree atrioventricular block (AVB2) when compared with the vehicle-treated animals. miRNA Transcriptome profiling revealed considerable changes in the differential expression of miRNAs in the Bz and Bz+PTX treatment groups compared with the control (infected, vehicle-treated) group. The latter showed pathways related to organismal abnormalities, cellular development, skeletal muscle development, cardiac enlargement, and fibrosis, likely associated with CCC. Bz-Treated mice exhibited 68 differentially expressed miRNAs related to signaling pathways like cell cycle, cell death and survival, tissue morphology, and connective tissue function. Finally, the Bz+PTX-treated group revealed 58 differentially expressed miRNAs associated with key signaling pathways related to cellular growth and proliferation, tissue development, cardiac fibrosis, damage, and necrosis/cell death. The T. cruzi-induced upregulation of miR-146b-5p, previously shown in acutely infected mice and in vitro T. cruzi-infected cardiomyocytes, was reversed upon Bz and Bz+PTX treatment regimens when further experimentally validated. Our results further our understanding of molecular pathways related to CCC progression and evaluation of treatment response. Moreover, the differentially expressed miRNAs may serve as drug targets, associated molecular therapy, or biomarkers of treatment outcomes.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , MicroRNAs , Nitroimidazóis , Pentoxifilina , Tripanossomicidas , Trypanosoma cruzi , Animais , Camundongos , Cardiomiopatia Chagásica/tratamento farmacológico , Pentoxifilina/farmacologia , Pentoxifilina/uso terapêutico , Transcriptoma , Modelos Animais de Doenças , Trypanosoma cruzi/genética , Doença de Chagas/parasitologia , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , MicroRNAs/genética , Fibrose , Perfilação da Expressão Gênica , Tripanossomicidas/farmacologia
3.
ACS Infect Dis ; 9(2): 213-220, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36661566

RESUMO

Chronic cardiomyopathy is one of the most relevant outcomes of Chagas disease associated with parasite persistence and exacerbated inflammatory response. Fenofibrate, a third generation fibric acid derivative and peroxisome proliferator-activated receptor-α ligand, is involved in the regulation of inflammatory response. However, the participation of macrophages in this scenario has not been elucidated. Here we show, for the first time, that macrophages play a fundamental role in the fenofibrate-mediated modulation of heart pro-inflammatory response and fibrosis caused by the infection with Trypanosoma cruzi. Furthermore, macrophages are required for fenofibrate to improve the loss of ventricular function and this restoration correlates with an anti-inflammatory microenvironment. Understanding the contributions of macrophages to the healing properties of fenofibrate reinforces its potential use as a therapeutic drug, with the aim of helping to solve a public health problem, such as chronic Chagas disease.


Assuntos
Cardiomiopatias , Cardiomiopatia Chagásica , Doença de Chagas , Fenofibrato , Humanos , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/complicações , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/complicações , Macrófagos
4.
Front Cell Infect Microbiol ; 12: 1017040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530434

RESUMO

Chronic Chagasic cardiomyopathy (CCC), a progressive inflammatory and fibrosing disease, is the most prominent clinical form of Chagas disease, a neglected tropical disease caused by Trypanosoma cruzi infection. During CCC, the parasite remains inside the cardiac cells, leading to tissue damage, involving extensive inflammatory response and irregular fibrosis. Among the fibrogenic factors is transforming growth factor-ß (TGF-ß), a key cytokine controlling extracellular matrix synthesis and degradation. TGF-ß is involved in CCC onset and progression, with increased serum levels and activation of its signaling pathways in the cardiac tissue, which crucially contributes to fibrosis. Inhibition of the TGF-ß signaling pathway attenuates T. cruzi infection and prevents cardiac damage in an experimental model of acute Chagas disease. The aim of this study was to investigate the effect of TGF-ß neutralization on T. cruzi infection in both in vitro and in vivo pre-clinical models, using the 1D11 monoclonal antibody. To this end, primary cultures of cardiac cells were infected with T. cruzi trypomastigote forms and treated with 1D11. For in vivo studies, 1D11 was administered in different schemes for acute and chronic phase models (Swiss mice infected with 104 parasites from the Y strain and C57BL/6 mice infected with 102 parasites from the Colombian strain, respectively). Here we show that the addition of 1D11 to cardiac cells greatly reduces cardiomyocyte invasion by T. cruzi and the number of parasites per infected cell. In both acute and chronic experimental models, T. cruzi infection altered the electrical conduction, decreasing the heart rate, increasing the PR interval and the P wave duration. The treatment with 1D11 reduced cardiac fibrosis and reversed electrical abnormalities improving cardiac performance. Taken together, these data further support the major role of the TGF-ß signaling pathways in T. cruzi-infection and their biological consequences on parasite/host interactions. The therapeutic effects of the 1D11 antibody are promising and suggest a new possibility to treat cardiac fibrosis in the chronic phase of Chagas' heart disease by TGF-ß neutralization.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Cardiomiopatia Chagásica/tratamento farmacológico , Trypanosoma cruzi/metabolismo , Camundongos Endogâmicos C57BL , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Fibrose
5.
PLoS Negl Trop Dis ; 16(12): e0010968, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36534647

RESUMO

BACKGROUND: Parasite persistence after acute infection with Trypanosoma cruzi is an important factor in the development of Chagas disease (CD) cardiomyopathy. Few studies have investigated the clinical effectiveness of CD treatment through the evaluation of cardiological events by long term follow-up of treated children. Cardiological evaluation in children is challenging since features that would be diagnosed as abnormal in an adult's ECG may be normal, age-related findings in a pediatric ECG trace. The objective was to evaluate cardiac involvement in patients with Chagas disease with a minimum follow-up of 6 years post-treatment. METHODOLOGY: A descriptive study of a cohort of pediatric patients with CD treated with benznidazole (Bz) or nifurtimox (Nf) was conducted. Children (N = 234) with at least 6 years post CD treatment followed at the Parasitology and Chagas Service, Buenos Aires Children's Hospital (Argentina) were enrolled. By convenience sampling, children who attended a clinical visit between August 2015 and November 2019 were also invited to participate for additional cardiovascular studies like 24-hour Holter monitoring and speckle-tracking 2D echocardiogram (STE). Benznidazole was prescribed in 171 patients and nifurtimox in 63 patients. Baseline parasitemia data was available for 168/234 patients. During the follow-up period, alterations in routine ECG were observed in 11/234 (4.7%, 95% CI [2-7.4%]) patients. In only four patients, with complete right bundle branch block (cRBBB) and left anterior fascicular block (LAFB), ECG alterations were considered probably related to CD. During follow-up, 129/130 (99%) treated patients achieved persistent negative parasitemia by qPCR. Also decrease in T.cruzi antibodies titers was observed in all patients and negative seroconversion occurred in 123/234 (52%) patients. CONCLUSIONS: A low incidence of cardiological lesions related to CD was observed in patients treated early for pediatric CD. This suggests a protective effect of parasiticidal treatment on the development of cardiological lesions and highlights the importance of early treatment of infected children. TRIAL REGISTRATION: ClinicalTrials.gov NCT04090489.


Assuntos
Cardiologia , Cardiomiopatia Chagásica , Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Adulto , Humanos , Criança , Nifurtimox/uso terapêutico , Parasitemia/epidemiologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/parasitologia , Nitroimidazóis/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia
7.
Curr Opin Infect Dis ; 35(5): 397-403, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35942849

RESUMO

PURPOSE OF THE REVIEW: This review examines the most recent literature on the epidemiology and treatment of Chagas Disease and the risk of Chagas Disease Reactivation and donor-derived disease in solid organ transplant recipients. RECENT FINDINGS: Chagas disease is caused by infection with the parasite Trypansoma cruzi . In nonendemic countries the disease is seen primarily in immigrants from Mexico, Central America and South America where the disease is endemic. Benznidazole or nifurtimox can be used for treatment. Posaconazole and fosravuconazole did not provide any additional benefit compared to benznidazole alone or in combination. A phase 2 randomized controlled trial suggests that shorter or reduced dosed regimes of benznidazole could be used. Based on a large randomized controlled trial, benznidazole is unlikely to have a significant preventive effect for established Chagas cardiomyopathy. Transplantation has become the treatment of choice for individuals with refractory Chagas cardiomyopathy. Cohort studies show similar posttransplant outcomes for these patients compared to other indications. Transplant candidates and donors with chronic T. cruzi infection are at risk for Chagas disease reactivation and transmitting infection. Screening them via serology is the first line of prevention. Recipients with chronic infection and those receiving organs from infected donors should undergo sequential monitoring with polymerase chain reaction for early detection of reactivation and preemptive treatment with antitrypanosomal therapy. SUMMARY: Patients with chronic T. cruzi infection can be safely transplanted and be noncardiac organ donors.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Cardiomiopatia Chagásica/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Ensaios Clínicos Fase II como Assunto , Humanos , Nitroimidazóis/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Doadores de Tecidos , Transplantados , Tripanossomicidas/uso terapêutico
9.
Artigo em Inglês | MEDLINE | ID: mdl-35772309

RESUMO

In addition to the long-established role in erythropoiesis, erythropoietin (Epo) has protective functions in a variety of tissues, including the heart. This is the most affected organ in chronic Chagas disease, caused by the protozoan Trypanosoma cruzi. Despite seven million people being infected with T. cruzi worldwide, there is no effective treatment preventing the disease progression to the chronic phase when the pathological involvement of the heart is often observed. Chronic chagasic cardiomyopathy has a wide variety of manifestations, like left ventricular systolic dysfunction, dilated cardiomyopathy, and heart failure. Since Epo may help maintain cardiac function by reducing myocardial necrosis, inflammation, and fibrosis, this study aimed to evaluate whether the Epo has positive effects on experimental Chagas disease. For that, we assessed the earlier (acute phase) and also the later (chronic phase) use of Epo in infected C57BL/6 mice. Blood cell count, biochemical parameters, parasitic load, and echocardiography data were evaluated. In addition, histopathological analysis was carried out. Our data showed that Epo had no trypanocide effect nor did it modify the production of anti-T. cruzi antibodies. Epo-treated groups exhibited parasitic burden much lower in the heart compared to blood. No pattern of hematological changes was observed combining infection with treatment with Epo. Chronic Epo administration reduced CK-MB serum activity from d0 to d180, irrespectively of T. cruzi infection. Likewise, echocardiography and histological results indicate that Epo treatment is more effective in the chronic phase of experimental Chagas disease. Since treatment is one of the greatest challenges of Chagas disease, alternative therapies should be investigated, including Epo combined with benznidazole.


Assuntos
Fármacos Cardiovasculares , Cardiomiopatia Chagásica , Eritropoetina , Animais , Fármacos Cardiovasculares/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Eritropoetina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Carga Parasitária , Trypanosoma cruzi
10.
J Vet Intern Med ; 36(3): 1100-1105, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35388923

RESUMO

Chagas cardiomyopathy, caused by the protozoal parasite Trypanosoma cruzi, is characterized by arrhythmias, myocardial damage, heart failure, and sudden death. We describe 2 dogs with severe, symptomatic Chagas cardiomyopathy characterized by myocardial dysfunction and electrocardiographic abnormalities that were managed with a combination of cardiac medications and antiparasitic treatment with itraconazole and amiodarone. Both dogs died suddenly within 6 months of diagnosis. These cases highlight the need for early detection of Chagas disease in dogs and continued research to develop effective antiparasitic treatment protocols.


Assuntos
Amiodarona , Anti-Infecciosos , Cardiomiopatia Chagásica , Doenças do Cão , Trypanosoma cruzi , Amiodarona/uso terapêutico , Animais , Anti-Infecciosos/uso terapêutico , Antiparasitários/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/veterinária , Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/veterinária , Doenças do Cão/tratamento farmacológico , Cães , Itraconazol/uso terapêutico
11.
Mem Inst Oswaldo Cruz ; 117: e210395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35239842

RESUMO

Transforming growth factor beta (TGF-ß) is deeply involved on the pathogenesis of Chagas disease. Our group has been investigating the participation of this pleiotropic cytokine in different aspects of Chagas disease over the last 20 years. Important observations have been made, such as: (i) the ability of Trypanosoma cruzi in activating latent TGF-ß; (ii) the potential involvement of TGF-ß pathway on T. cruzi invasion of host cells; (iii) association of TGF-ß with parasite intracellular replication; (iv) cardiac fibrosis development and maintenance; (v) disruption of Connexin-43 plaque structures and (vi) inflammation and immune response. In this perspective article we intend to discuss the advances of the potential use of new therapies targeting TGF-ß to treat the cardiac alterations of Chagas disease-affected patients.


Assuntos
Cardiomiopatia Chagásica , Trypanosoma cruzi , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/metabolismo , Coração , Humanos , Miocárdio/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Trypanosoma cruzi/fisiologia
12.
Front Immunol ; 12: 782891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925364

RESUMO

Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-ß, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.


Assuntos
Anti-Inflamatórios/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Nitroimidazóis/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/uso terapêutico , Cardiomiopatia Chagásica/imunologia , Cromonas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Morfolinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Nitroimidazóis/uso terapêutico , Cultura Primária de Células , Células RAW 264.7
13.
PLoS Negl Trop Dis ; 15(11): e0009978, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784372

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 µg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 µg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue. CONCLUSIONS/SIGNIFICANCE: AT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Animais , Cardiomiopatia Chagásica/genética , Cardiomiopatia Chagásica/imunologia , Cardiomiopatia Chagásica/parasitologia , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Coração/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/imunologia , Nitroimidazóis/administração & dosagem , Carga Parasitária , Receptores de Formil Peptídeo/genética , Receptores de Formil Peptídeo/imunologia , Trypanosoma cruzi/fisiologia
14.
Front Cell Infect Microbiol ; 11: 708325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504808

RESUMO

Chronic Chagasic cardiomyopathy (CCC) is a severe clinical manifestation that develops in 30%-40% of individuals chronically infected with the protozoal parasite Trypanosoma cruzi and is thus an important public health problem. Parasite persistence during chronic infection drives pathologic changes in the heart, including myocardial inflammation and progressive fibrosis, that contribute to clinical disease. Clinical manifestations of CCC span a range of symptoms, including cardiac arrhythmias, thromboembolic disease, dilated cardiomyopathy, and heart failure. This study aimed to investigate the role of signal transducer and activator of transcription-3 (STAT3) in cardiac pathology in a mouse model of CCC. STAT3 is a known cellular mediator of collagen deposition and fibrosis. Mice were infected with T. cruzi and then treated daily from 70 to 91 days post infection (DPI) with TTI-101, a small molecule inhibitor of STAT3; benznidazole; a combination of benznidazole and TTI-101; or vehicle alone. Cardiac function was evaluated at the beginning and end of treatment by echocardiography. By the end of treatment, STAT3 inhibition with TTI-101 eliminated cardiac fibrosis and fibrosis biomarkers but increased cardiac inflammation; serum levels of interleukin-6 (IL-6), and IFN-γ; cardiac gene expression of STAT1 and nuclear factor-κB (NF-κB); and upregulation of IL-6 and Type I and Type II IFN responses. Concurrently, decreased heart function was measured by echocardiography and myocardial strain. These results indicate that STAT3 plays a critical role in the cardiac inflammatory-fibrotic axis during CCC.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Fator de Transcrição STAT3 , Trypanosoma cruzi , Animais , Cardiomiopatia Chagásica/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Coração , Camundongos , Fator de Transcrição STAT3/antagonistas & inibidores
15.
J Glob Antimicrob Resist ; 27: 160-166, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496323

RESUMO

OBJECTIVES: This study aimed to describe the electrocardiographic and echocardiographic status of chronic Chagas disease (cChD) patients treated with nifurtimox. METHODS: An observational study was performed in 146 cChD patients followed over a mean of 7.9 years. RESULTS: Of the 146 patients, 41 (28.1%) with normal electrocardiogram (ECG) at baseline maintained this condition, 34 (23.3%) with altered ECG at baseline normalised the alterations, and 46 (31.5%) with ECG abnormalities at baseline maintained this condition [23 (15.8%) with small alterations]. Finally, 25 cases (17.1%) in indeterminate phase altered the ECG. Differences before and after follow-up (P < 0.001) were found. The percentage of beneficial treatment was different than expected by chance (Z = 4.8; P < 0.001) and the annual percentage of cases that developed ECG alterations was lower than that of a historical cohort of untreated patients (P < 0.001). An echocardiogram was performed in 68 patients with baseline ECG alterations. The ejection fraction (EF) was normal in 57 (83.8%) and abnormal in 11 (16.2%). In 38 patients with ECG abnormalities that did not progress after treatment, EF and segmental motility (SM) were normal in 31 (81.6%) and 26 (68.4%), respectively. In 17 patients with ECG abnormalities, EF and SM were normal in 15 (88.2%) and 14 (82.4%) cases, respectively. CONCLUSION: Less progression to cardiomyopathy compared with a historical untreated cohort as well as the EF/SM results in patients with abnormal ECG that did not progress and in indeterminate cChD that altered the ECG suggests a beneficial effect of nifurtimox.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Cardiomiopatia Chagásica/diagnóstico por imagem , Cardiomiopatia Chagásica/tratamento farmacológico , Doença de Chagas/tratamento farmacológico , Chile , Ecocardiografia , Eletrocardiografia , Seguimentos , Humanos , Nifurtimox/uso terapêutico
16.
Front Cell Infect Microbiol ; 11: 692655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381739

RESUMO

Chronic Chagas cardiomyopathy (CCC) is the most frequent and severe form of Chagas disease, a neglected tropical illness caused by the protozoan Trypanosoma cruzi, and the main cause of morbimortality from cardiovascular problems in endemic areas. Although efforts have been made to understand the signaling pathways and molecular mechanisms underlying CCC, the immunological signaling pathways regulated by the etiological treatment with benznidazole (Bz) has not been reported. In experimental CCC, Bz combined with the hemorheological and immunoregulatory agent pentoxifylline (PTX) has beneficial effects on CCC. To explore the molecular mechanisms of Bz or Bz+PTX therapeutic strategies, C57BL/6 mice chronically infected with the T. cruzi Colombian strain (discrete typing unit TcI) and showing electrocardiographic abnormalities were submitted to suboptimal dose of Bz or Bz+PTX from 120 to 150 days postinfection. Electrocardiographic alterations, such as prolonged corrected QT interval and heart parasite load, were beneficially impacted by Bz and Bz+PTX. RT-qPCR TaqMan array was used to evaluate the expression of 92 genes related to the immune response in RNA extracted from heart tissues. In comparison with non-infected mice, 30 genes were upregulated, and 31 were downregulated in infected mice. Particularly, infection upregulated the cytokines IFN-γ, IL-12b, and IL-2 (126-, 44-, and 18-fold change, respectively) and the T-cell chemoattractants CCL3 and CCL5 (23- and 16-fold change, respectively). Bz therapy restored the expression of genes related to inflammatory response, cellular development, growth, and proliferation, and tissue development pathways, most probably linked to the cardiac remodeling processes inherent to CCC, thus mitigating the Th1-driven response found in vehicle-treated infected mice. The combined Bz+PTX therapy revealed pathways related to the modulation of cell death and survival, and organismal survival, supporting that this strategy may mitigate the progression of CCC. Altogether, our results contribute to the better understanding of the molecular mechanisms of the immune response in the heart tissue in chronic Chagas disease and reinforce that parasite persistence and dysregulated immune response underpin CCC severity. Therefore, Bz and Bz+PTX chemotherapies emerge as tools to interfere in these pathways aiming to improve CCC prognosis.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Animais , Cardiomiopatia Chagásica/tratamento farmacológico , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Nitroimidazóis
17.
Parasitol Int ; 83: 102345, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33857596

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is a major neglected tropical disease that occurs mainly as chronic infection and systemic infection. Currently, there is no suitable and effective drug to treat this parasitic disease. Administration of nutrients with immunomodulatory properties, such as arginine and nitric oxide radicals, may be helpful as antiparasitic therapy. In this study, we evaluated the effects of arginine supplementation during the acute phase of infection under the development of chronic Chagas' heart disease in Swiss mice inoculated with the Berenice-78 strain of T. cruzi. The effectiveness of arginine was determined by daily detection of the parasite in the blood and long-term serum levels of nitric oxide and tumor necrosis factor-alpha, in addition to evaluation of heart tissue damage. Arginine could flatten parasitemia and prevent elevation of tumor necrosis factor-alpha in T. cruzi-infected mice. Regarding chronic inflammatory myocardial derangements, similar findings were verified among T. cruzi-infected groups. Arginine promoted collagenogenesis in the heart muscle tissue of T. cruzi-infected arginine-supplemented group. These data show the paradoxical benefits of arginine in improving the outcome of Chagas chronic cardiomyopathy.


Assuntos
Arginina/metabolismo , Cardiomiopatia Chagásica/patologia , Colágeno/fisiologia , Coração/parasitologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Ração Animal/análise , Animais , Arginina/administração & dosagem , Arginina/farmacologia , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/parasitologia , Dieta , Suplementos Nutricionais/análise , Coração/efeitos dos fármacos , Camundongos , Tripanossomicidas/administração & dosagem , Tripanossomicidas/metabolismo
18.
Parasitol Int ; 81: 102248, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33238215

RESUMO

Curcumin (Cur) is a natural polyphenolic flavonoid isolated from the rhizomes of Curcuma longa. Its anti-inflammatory and cardioprotective properties are increasingly considered to have beneficial effects on the progression of cardiomyopathy associated with Chagas disease, caused by Trypanosoma cruzi. However, the Cur therapeutic limitation is its bioavailability and new Cur nanomedicine formulations are developed to overcome this obstacle. In this research, we provide evidence showing that oral therapy with a suboptimal dose of the standard parasiticidal drug benznidazole (BZ) in combination with Cur-loaded nanoparticles is capable of reducing myocardial parasite load, cardiac hypertrophy, inflammation and fibrosis in mice with long-term infection by T. cruzi. Treatment with BZ plus Cur was highly effective in downregulating myocardial expression of proinflammatory cytokines/chemokines (IL-1ß, TNF-α, IL-6, CCL5), and the level/activity of matrix metalloproteinases (MMP-2, MMP-9) and inducible enzymes (cyclooxygenase, nitric oxide synthase) implicated in leukocyte recruitment and cardiac remodeling. Oral administration of a Cur-based nanoformulation displays potential as a complementary strategy to the conventional BZ chemotherapy in the treatment of chronic Chagas heart disease.


Assuntos
Cardiomiopatia Chagásica/tratamento farmacológico , Curcumina/farmacologia , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/fisiologia , Animais , Cardiomiopatia Chagásica/parasitologia , Doença Crônica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Transpl Infect Dis ; 23(4): e13549, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33345420

RESUMO

BACKGROUND: Heart transplant (HT) remains the most frequently indicated therapy for patients with end-stage heart failure that improves prognosis in Chagas cardiomyopathy (CCM). However, the lack of benznidazole therapy and availability of RT-PCR follow-up in many centers is a major limitation to perform this life-saving intervention, as there are concerns related with the risk of reactivation. We aimed to describe the outcomes of a cohort of patients with CCM who underwent HT using a conventional protocol with mycophenolate mofetil, without benznidazole prophylaxis or RT-PCR follow-up. METHODS: Retrospective cohort study. Between 2008 and 2018, 43 patients with CCM underwent HT. A descriptive analysis to characterize outcomes as rejection, infectious and neoplastic complications and a survival analysis was carried out. RESULTS: Median of follow-up was 4.3 (IR 4.28) years. Survival at 1 month, 1 year, and 5 years was 95%, 85%, and 75%, respectively, infections being the main cause of death (60%). Reactivations occurred in only three patients (7.34%) and were not related to mortality. CONCLUSION: This cohort showed a favorable survival and a low reactivation rate without an impact on mortality. Our results suggest that performing HT in patients with CCM following conventional guidelines and recommendations for other etiologies is a safe approach.


Assuntos
Cardiomiopatia Chagásica , Insuficiência Cardíaca , Transplante de Coração , Cardiomiopatia Chagásica/tratamento farmacológico , Cardiomiopatia Chagásica/cirurgia , Estudos de Coortes , Transplante de Coração/efeitos adversos , Humanos , Estudos Retrospectivos
20.
Cochrane Database Syst Rev ; 12: CD004102, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33305846

RESUMO

BACKGROUND: People with Chagas disease may develop progressive and lethal heart conditions. Drugs to eliminate the parasite Trypanosoma cruzi (T cruzi) currently carry limited therapeutic value and are used in the early stages of the disease. Extending the use of these drugs to treat chronic chagasic cardiomyopathy (CCC) has also been proposed. OBJECTIVES: To assess the benefits and harms of nitrofurans and trypanocidal drugs for treating late-stage, symptomatic Chagas disease and CCC in terms of blood parasite reduction or clearance, mortality, adverse effects, and quality of life. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and LILACS databases on 12 November 2019. We also searched two clinical trials registers, ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP), on 3 December 2019. SELECTION CRITERIA: We included randomised controlled trials (RCTs) assessing trypanocidal drugs versus placebo or no treatment for late-stage, symptomatic Chagas disease and CCC. DATA COLLECTION AND ANALYSIS: We conducted the reporting of the review according the standard Cochrane methods. Two review authors independently retrieved articles, performed data extraction, and assessed risk of bias. Any disagreements were resolved by a third review author. We contacted study authors for additional information. MAIN RESULTS: We included two studies in this review update. One RCT randomly assigned 26 participants to benznidazole 5 mg/kg/day; 27 participants to nifurtimox 5 mg/kg/day; and 24 participants to placebo for 30 days. The second RCT, newly included in this update, randomised 1431 participants to benznidazole 300 mg/day for 40 to 80 days and 1423 participants to placebo. We also identified one ongoing study. Benznidazole compared to placebo At five-year follow-up, low quality of the evidence suggests that there may be a benefit of benznidazole when compared to placebo for clearance or reduction of antibody titres (risk ratio (RR) 1.25, 95% confidence interval (CI) 1.14 to 1.37; 1 trial; 1896 participants). We are uncertain about the effects of benznidazole for the clearance of parasitaemia demonstrated by negative xenodiagnosis, blood culture, and/or molecular assays due to very limited evidence. Low quality of the evidence suggests that when compared to placebo, benznidazole may make little to no difference in the risk of heart failure (RR 0.89, 95% CI 0.69 to 1.14; 1 trial; 2854 participants) and ventricular tachycardia (RR 0.80, 95% CI 0.51 to 1.26; 1 trial; 2854 participants). We found moderate quality of the evidence that adverse events increase with benznidazole when compared to placebo (RR 2.52, 95% CI 2.09 to 3.03; 1 trial; 2854 participants). Adverse effects were observed in 23.9% of patients in the benznidazole group compared to 9.5% in the placebo group. The most frequent adverse effects were: cutaneous rash, gastrointestinal symptoms, and peripheral polyneuropathy. No data were available for the outcomes of pathological demonstration of tissue parasites and quality of life. Nifurtimox compared to placebo Data were only available for this comparison for the outcome clearance or reduction of antibody titres, and we are uncertain about the effect due to very limited evidence. Regarding adverse events, one RCT mentioned in a general manner that nifurtimox caused intense adverse events, without any quantification. AUTHORS' CONCLUSIONS: There is insufficient evidence to support the efficacy of the trypanocidal drugs benznidazole and nifurtimox for late-stage, symptomatic Chagas disease and CCC.


Assuntos
Doença de Chagas/tratamento farmacológico , Nifurtimox/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Cardiomiopatia Chagásica/tratamento farmacológico , Doença Crônica , Humanos , Nifurtimox/efeitos adversos , Nitroimidazóis/efeitos adversos , Parasitemia/tratamento farmacológico , Placebos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Tripanossomicidas/efeitos adversos , Trypanosoma cruzi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...